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▪ In the framework of the design and of the reliability assessment of 

structures, among the static and dynamic loads that have to be 

considered, certainly the most important one is the seismic load. 

 

▪ The analysis of recorded accelerograms after earthquakes evidence 

that different earthquakes produce ground motions with different 

characteristics (intensity, duration, dominant periods and frequency 

content). 

 

▪ Time-histories can be considered as sample of a zero mean Gaussian 

non-stationary processes in both amplitude and frequency content: 

the so-called fully non-stationary processes.  

 

▪ It is fully characterized by the so-called evolutionary power spectral density 

(EPSD) function, which, for earthquake-resistant structures, should be 

compatible with the target spectrum given by the codes. 
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▪ During the analysis of structural systems, the reference structural 

parameters could be modified for design reasons (i.e. this is very 

frequent in the optimization procedures for the design of devices). 

 

▪ The sensitivity analysis (evaluation of partial derivatives of a performance 

measure with respect to system parameters) is a suitable vehicle to evaluate 

the variation of the structural systems under the influence of changes 

of parameter values (Arora and Haug, 1979). 

 

▪ Since the ground motion acceleration is a non-stationary processes, 

the sensitivity of the response evolutionary power spectral density (EPSD) of 

structures subjected to non-stationary stochastic processes is an 

essential information and, consequently, it plays a fundamental role in 

structural design.  

 

 

 

Introduction                                         2/3 

3/24 



Since such structural systems are non-classically damped, the main steps of 

the proposed approach are: 

 

1. to write governing motion equations in state-variables 

 

2. to evaluate the time-frequency varying response vector functions TFR in 

explicit form (Alderucci and Muscolino, 2018); 

 

3. to determine closed form solutions of first-order derivatives of the 

TFR as well as of the one-sided EPSD of the structural response, 

with respect to device parameters  

Aim: to propose a novel method for the evaluation of the sensitivities of stochastic 

response characteristics of structural systems with damping devices subjected to fully 

non-stationary spectrum compatible excitations 
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Small parameters 

 variation 

Nominal values of design parameters 

▪ Equation of motion in state variables: 

0  α α α

▪ Equation of motion of a quiescent MDOF structural system: 
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▪ The following coordinate transformation is introduced: 

     t t  Z α Ψ α X α

▪ It is possible to perform a complex modal analysis 
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▪ The sensitivity vector of the structural response in state variables with 

respect to the i-th parameter αi of the α vector 

▪ Sensitivity analysis consist in the evaluation of the change in the 

system response due to system parameter variations in the 

neighbourhood of prefixed values, called “nominal parameter”. 
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can be obtained by differentiating the equation of motion with respect to α, 

setting α=α0 
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▪ Alternatively, the state-variable sensitivity vector with respect to the i-

th parameter, can be evaluated as 

     0 0 0, ,,i it t
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sensitivity vector of the response into 

the complex modal subspace 
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 Notice that for deterministic excitation the state-variable sensitivity 

vectors with respect to the i-th uncertain parameter, can be easily 

evaluated by step-by-step procedures (Cacciola et al, 2005). 
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Seismic accelerations as fully non-stationary  

random processes                                       1/2 

 The ground motion acceleration,       , is herein assumed as a zero-

mean Gaussian fully non-stationary random process, defined by the  

Priestley spectral representation (Priestley, 1965; 1967).  
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 The zero-mean Gaussian fully non-stationary random process is a 

complex process. 
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 The complex process        can be completely defined in the time 

domain by the knowledge of its complex autocorrelation function. 

one sided EPSD function   
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 The seismic excitations, is herein modeled as fully non-stationary 

spectrum compatible processes.  

 It is well known that for fully non-stationary random model the 

spectrum compatible EPSD function cannot be defined univocally 

(Cacciola 2010). Here the iterative procedure recently proposed by 

(Alderucci et al, 2019) is adopted.  

Seismic accelerations as fully non-stationary  

random processes                                       2/2 
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 The time-frequency varying response (TFR) vector function of the response 

plays a central role in the evaluation of the statistics of the response for 

both classically and non-classically damped structural systems subjected 

to fully non-stationary stochastic input 

( , , ) ( ) ( , , )t t Z α Ψ α X α
unknown r-order  

parameter vector 

MTFR 

(Muscolino and 

Alderucci 2015, 2018) 

 
 For the Spanos and Solomos (1983) model  
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Closed form solution for the sensitivity time-

frequency varying response vector function   2/3 

 The sensitivity of the TFR vector function 

MSTFR    0 0 0, , ( , , ),i it t 
Z

s α = Ψ α Y α

                  is the modal sensitivity TFR vector function with respect to the 

parameter     . It can be evaluated as solution of the following differential 

equation with zero start conditions at initial time: 

 
 

0( , , )i tY α

 The equations of the MTFR vector (Alderucci, Genovese and 

Muscolino 2019) are rewritten as: 
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▪ It follows that the MSTFR vector function can be evaluate in closed form 

solution as: 
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▪ The particular solution vector are determined as follows: 

 



▪ This matrix is called pre-envelope covariance (PEC) matrix function, in 

nodal space; it is a           Hermitian matrix, whose real part coincides 

with the classical covariance matrix (Di Paola, 1985).  

 

* * *
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▪ The stochastic response is a zero-mean fully non-stationary stochastic 

vector process too, whose one-sided EPSD matrix function can be 

evaluated as follows (Alderucci, Genovese and Muscolino 2019): 

TFR vector responses  in the nodal space 

TFR vector responses  in the modal complex space 

one-sided PSD function of the “embedded” stationary counterpart of the input process 
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▪ By differentiating the PEC matrix, it is possible to evaluate its sensitivity 

with respect to the i-th parameter, in the neighbourhood of nominal 

parameters,         , as follows: 
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: 

▪ whose elements are the sensitivity of first three spectral moments with 

respect to the parameter  

is the sensitivity of the one-sided EPSD function 

matrix of nodal response 
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Numerical Application                         1/7 

▪ In order to show the effectiveness of the proposed method, 4 SDOF 

systems are analysed. 
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▪ An external damper device, 

with damping coefficient 

cd and stiffness kd is 

connected to each SDOF 

system. 

▪ For the SDOF system the PEC matrix function, in nodal space, it is a   

Hermitian matrix, whose real part coincides with the classical covariance 

matrix.  
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non-geometric spectral moments (NGSM) 

of i-th order of stochastic response 

(Michealov et al, 1999). .  
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▪ The selected structures are subjected to a fully non-stationary spectrum-

compatible seismic input 
2
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▪ The Spanos and Solomos (1983)  time-modulating-function                                                     

has been set. 
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19 

▪ The spectrum compatibility is obtained through the formulation 

proposed by Alderucci et al (2019) 

The target spectrum is obtained 

following the EC8 instructions  
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Numerical Application                        4/7 
 In order to choose the best damper stiffness of the device, a parametric 

analysis has been conducted to define the optimal stiffness value, 

varying the parameter in the range 1÷108 N/m 

The chosen stiffness 

value of the fluid 

dampers devices is 

30 N/m, since the 

parameter changes 

don’t affect 

significantly the 

response  
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 The maximum values of the variance of the response, versus the damping 

coefficient, for the previously chosen optimal value of the stiffness 
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 In order to define the best damping 

coefficient value, a parametric study 

has been conducted, analyzing the 

sensitivity of nodal response 
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 It is well known that for small 

variation of a parameter with 

respect the nominal one, it is 

possible to predict with good 

accuracy the variation of the 

response spectral moment by 

the knowledge of its sensitivity.  

 

Table I. Optimal damping 

values for each SDOF 

system 

T 

[s] 

cd 

[Ns/m] 

0.1 

0.2 

0.6 

1.0 

31 623 

50 119 

158 489 

310 000 

 

 

 The optimal damping 

coefficients, are those 

corresponding to the points 

at which the minimum 

values of the sensitivity 

functions, assume the 

smallest values.  
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Concluding Remarks  

24/24 

 The present work aimed to define a new method to evaluate sensitivities of 

stochastic response characteristics of structural systems subjected to seismic 

excitations; 

 

  The ground motion acceleration was herein modelled as fully non-

stationary spectrum compatible Gaussian stochastic processes. 

 

 Closed form solutions for the first-order derivatives of the TFR as 

well as of the one-sided evolutionary PSD (EPSD) of the structural 

response, with respect to damping parameters of devices, are 

evaluated.  

 

  The numerical application on different SDOF oscillators showed the 

accuracy and the computational efficiency of the proposed method 
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