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◆ Outline
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◆ Introduction

• With the development of science and technology, functionally graded composite materials are 

widely used. Various types of FG materials have been proposed.

• In FG materials, material composition is tailored to continuously vary over one or more 

dimension(s) to simultaneously meet different mechanical requirements.
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◆ Introduction

• Owing to extraordinary mechanical, thermal and electrical properties of nano-materials, the nano-

FG composites have attracted worldwide attentions in the field of composite materials.
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◆ Introduction

• Compared with other carbon-based nanofillers, graphene has extremely high specific surface area, 

which make them excellent candidates as the reinforcement materials in nanocomposites.

• Recently, a new type of FG graphene-platelets (GPLs) reinforced nanocomposites (FG-GPLRC) 

have been proposed. 

• Publications concerning FG-GPLRC  has been growing extensively
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◆ Introduction

• Material properties of composites are inevitably subject to some degree of uncertainty due to complicated 

manufacturing processes and inherent nonuniform dispersion of constituents.

• Uncertainties in composites are usually modelled as random variables and the uncertainty propagations are analyzed 

by the probabilistic methods. 
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• However, the available information for determining probability density function in composites is commonly limited, 

the results of probabilistic analysis could be insufficiently correct.



◆ Introduction

• When bounds of the uncertainty variables can be fixed, interval method can be used to evaluate the uncertainty effect 

on material performances.

• Studies on interval analysis on FG-GPLRC materials is still few, and effects of parameter uncertainty on behaviors of 

FG-GPLRC are unclear. 

• In this work, the free vibration of an FG-GPLRC plate with interval parameters is investigated. 
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◆ Free vibration of FG-GPLRC plate
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A multi-layer functionally graded graphene 
platelets reinforced polymer plate

• Modified Halpin-Tsai model is adopted to obtain the effective Young’s modulus of each layer of the FG-

GPLRC plate: 

• Mass density and Poisson’s ratio of each layer can be 

calculated by rule of mixture : 

MMGPLGPLC VV  +=

MMGPLGPLC VvVvv +=
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◆ Free vibration of FG-GPLRC plate
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A multi-layer functionally graded graphene 
platelets reinforced polymer plate

• Use the theory of first-order shear deformation plate to setup constitutive relationship of FG-GPLRC plate : 

),,(),,,(

),,(),,(),,,(

),,(),,(),,,(

0

0

0

tyxwtzyxW

tyxztyxvtzyxV

tyxztyxutzyxU

y

x

=

+=

+=





κε z

xy

y

x

z

x

v

y

u

y

v
x

u

yx

y

x

xy

y

x

+=
































+












+
































+












=
















0

00

0

0













0

0

0

γ=






















+




+

=








x

w

y

w

x

y

xz

yz









)(

)(

)( k

xz

yz

xy

y

x

k

k

xz

yz

xy

y

x



































=















































Q0

0P

9



◆ Free vibration of FG-GPLRC plate
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A multi-layer functionally graded graphene 
platelets reinforced polymer plate

• The relationship between internal forces and strains can be further setup: 
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• According to the Hamilton’s principle, the governing equations of 

motion of the FG-GPLRC plate can be derived: 
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◆ Free vibration of FG-GPLRC plate
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• Navier’s method is used to solved the above governing equation of motion: 

• for the simply-supported boundary conditions at all edges: 
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◆ Free vibration of FG-GPLRC plate
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• Substitute the above Navier’s displacement functions into the governing equation of motion, depending on the 

characteristics of double-Fourier functions, the discretized equation of free vibration of the plate  can be 

obtained (generalized eigenvalue problem): 
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◆ Interval eigenvalue analysis

• In the non-probability interval framework, an uncertain quantity is expressed its upper and lower bounds:

],[ ii

I
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• In engineering analysis, an interval variable is commonly denoted by its midpoint and the uncertainty 

degree (rate of deviation radius to midpoint):
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• An interval vector or matrix is who includes interval parameters in its elements:
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◆ Interval eigenvalue analysis

• In engineering interval problems, the phenomenon of interval dependency may affect the accuracy of interval bounds of 

structural performances.

• Interval dependency: For an uncertain physical quantity in the governing equation of engineering problem, it should 

take the same value anywhere it appears in the governing equation. But in interval computations, it may take different 

values in different places where it appears in the corresponding interval form of the governing equation. Such a 

phenomenon could make the bounds of solutions be exaggerated.  

• Therefore, in order to achieve real bounds of the above interval eigenvalues, an effective method should be found to 

overcome the phenomenon of interval dependency.

• Here, we turn to evaluate the monotony of eigenvalues on the interval variables, which could be a potential direction. If 

the monotony exists, the interval variable will take the same bound anywhere it appears. Thus, interval dependency 

disappear automatically.

• Therefore, for a free vibration problem with interval parameters, the corresponding mathematical model is a 

generalized interval eigenvalue problem: 

( ) ( ) ( ) ( ) ( )  =K α α α M α α =[ , ]Iα α α α )()( 2 II
αα  =

Interval matrices

Interval vectors
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• Consequently, we differentiate the above generalized eigenvalue problem  on each interval variable:
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• Further, combine similar terms:

• A transposition of eigenvector can be right-multiplied on the equation:
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◆ Interval eigenvalue analysis
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( ) ( )( ) ( ) = ( ) ( ) ( )
T T
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• At the same time, the eigenvalue equation can be transformed as:

◆ Interval eigenvalue analysis

Expand

Combine similar terms

Symmetry-mass/stiffness matrix
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et al., 2015): 

◆ Interval eigenvalue analysis
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0
i

S  Eigenvalue is increasing function of the interval

0
i

S  Eigenvalue is decreasing function of the interval

(UB)
ii =(LB)

ii =

(LB)
ii =

(UB)

ii =

• The interval eigenvalue problem can be evaluated by two deterministic eigenvalue problems: 
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• Bounds of intervals used for computation is decided by the results of sensitivity:

◆ Interval eigenvalue analysis



Solve deterministic eigenvalue problem 
when intervals take their midpoints

Compute derivatives of matrices of 
mass and stiffness on intervals when 

they take midpoints

Obtain  sensitivities of eigenvalues on 
intervals

Compute bounds of eigenvalues by 
solving two deterministic eigenvalue 

problems
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◆ Results and discussions

Four patterns of GPLs distribution (linear variation among layers)
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• width × length × thickness of plate: a×b×h = 0.45m×0.45m×0.045m

• Average dimension of GPLs: lGPL×wGPL×hGPL = 2.5μm×1.5μm×1.5nm

• Density, Young’s moduls and Poisson’s ratio of GPLs and polymer matrix: 

GPL = 1.06g / cm3，M = 1.2g / cm3，EGPL = 1.01TPa，EM = 3GPa，vGPL

= 0.186和vM = 0.34

• Weight fraction of GPLs in plate: gGPL = 1%

• Total layers: NL = 10
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◆ Results and discussions



Pattern 3: Sensitivities of first five eigenvalues on Young’s modulus of each layer

➢ All sensitivities are positive for any pattern

➢ Bounds of eigenvalue are consistent with bounds of interval parameters
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◆ Results and discussions



Effect of uncertainty of any individual layer on first five eigenvalues 23

➢ The effect of uncertainty of Young’s modulus is different among patterns 

➢ The effect is different among orders of eigenvalue, but basically invariant after 2nd order of eigenvalue

◆ Results and discussions



Effect of uncertainty of any individual layer on first five eigenvalues 24

➢ The number of uncertain layer obviously influent the effect of uncertainty:

✓ For 1st eigenvalue, the effect from the surface layer (1st and 10th) is more significant (no matter patterns)

✓ For eigenvalues after 2nd, it is the layer with more GPLs produces more obvious effect of uncertainty

◆ Results and discussions



Effect of uncertainty of any individual layer on first five eigenvalues 25

➢ The layer with same GPLs weight produces same uncertainty of eigenvalue (Symmetry)

➢ Pattern 3 has the largest uncertainty degree of eigenvalue

◆ Results and discussions



✓ The effects of two layers are linearly superposed (Shape of curves don’t change)

✓ Pattern 4, spatially symmetric layers have different GPLs weight, so the effect keeps invariant after superposition 
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◆ Results and discussions

Effect of uncertainty when both layers of opposite positions are interval



✓ With the increasing of uncertain layers, the uncertainty degree of each eigenvalue gradually increases

✓ For patterns with symmetric distribution-GPLs, uncertainty under all 5 uncertain layers becomes same for all eigenvalues
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◆ Results and discussions

Variation of uncertainty effect under increasing number of interval layers



✓ When all the 10 layers are uncertain, the uncertainty degree for all patterns are 5% 

✓ Although the u.c. of eigenvalue is lower than that of Young’s modulus (10%), when more types of  material 

parameters are uncertain, u.c. of eigenvalue could be expected to exceed 10%
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◆ Results and discussions

Uncertainty degree of eigenvalues when all layers are interval



◆ Conclusions

• Uncertainty  of  Young’s modulus results in uncertainty of natural frequencies of FG-GPLRC plate

• Under same uncertainty degree of Young’s modulus, uncertainty degree of 1st eigenvalue is different 

from that of higher orders of eigenvalues

• Uncertainty effect differs among GPLs patterns, with the most eminent effect in Pattern 3

• For 1st eigenvalue (fundamental frequency), the layer near plate surface has more obvious 

uncertainty effect

• For other eigenvalues, the effect from the layer with more GPLs is more significant

• The layers with symmetric spatial position have the same effect, and the effect of layers can be 

linearly superposed. 

• The uncertainty degree of all natural frequencies of FG-GPLRC plate are less than the uncertainty 

degree of Young’s modulus.
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For all 

patterns

For all eigenvalues
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