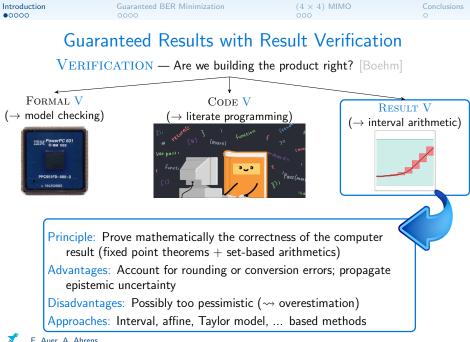
Guaranteed Minimization of the Bit Error Ratio for Correlated MIMO Systems

Ekaterina Auer and Andreas Ahrens

University of Applied Sciences Wismar

May 20, 2021



E. Auer. A. Ahrens

Result Verification: Applications

Computer assisted proofs

 Smale's 14th: Do the properties of the Lorenz attractor exhibit that of a strange attractor?
Answer: Yes, proved by W. Tucker in 2002 with intervals

Other application areas

- \rightarrow Computer graphics [Luther,Stolfi]
- \rightarrow Finance/decision-making [Hu,Tsao]
- → Imprecise probability [Kreinovich, Ferson]

Main area: Engineering

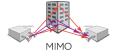
- → Robotics [Jaulin,Merlet]
- \rightarrow Chemical engineering [Stadtherr]
- → Particle accelerators [Makino,Berz]
- \rightarrow Control theory [Walter,Rauh]
- \rightarrow ... many more ...

And now: Wireless communications!

http://www.cs.utep.edu/interval-comp/

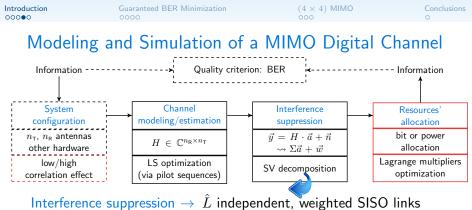
A positioner for the ESRF, Merlet

Focus: MIMO (Multiple Input Multiple Output) Systems



Improve the channel capacity/integrity without increasing the channel bandwidth or the transmit power

Method:	Multiple data streams are transmitted on the same frequency band and at the same time
Separation:	Spatial, for example, multiple antennas at the transmitter and receiver side at different locations
Correlation effect:	Caused by the proximity of the multiple antennas; transmit-to-receive paths might become too similar!
Channel capacity:	The information theoretic limit on the bit ratio (BER)
BER:	The number of bits per second that can be transmitted through a physical channel error free



(pre: $\vec{z} = V\vec{a}$, post: $\vec{u} := U^{\dagger}\vec{z} = U^{\dagger} (U\Sigma V^{\dagger}) V\vec{a} + U^{\dagger}\vec{n} = \Sigma\vec{a} + \vec{w}$) Each stage might be affected by uncertainty and numerical errors! Uncertain factors: $\lambda_l = \sqrt{\xi_l}$ — singular values of H σ^2 — the noise variance at the receiver side Resources allocation: L number of activated layers, $P_s^{(l)}$ transmit power, M constellation size

E. Auer, A. Ahrens

Focus: Compare (Un-)Correlated Channel Realizations

Weights λ_l are not equal

Proximity might make this stronger! Indicator: $\vartheta = \frac{\text{the smallest }\lambda}{\text{the largest }\lambda}$ Illustration for a (4 × 4) MIMO channel (5000 realizations each):

> 120 correlated uncorrelated × 100 80 Frequency 60 40 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0 Ratio ϑ between the smallest and the largest SV

E. Auer, A. Ahrens

oduction	Guaranteed BER Minimization	(4×4) MIMO
000	•000	000

Enclosing the BER for Uncertain Parameters

$$\mathsf{BER} \ P_b = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot \mathsf{erfc} \left(\frac{\lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right)$$

Task: Minimize the BER for uncertain $\lambda_l \in [\underline{\lambda}_l, \overline{\lambda}_l]$, $\sigma \in [\underline{\sigma}, \overline{\sigma}]$

 \rightarrow Minimize the upper bound!

Bound:
$$\frac{2}{\sum_{l=1}^{L} \log_2 M_l} \sum_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot \operatorname{erfc}\left(\frac{\underline{\lambda}_l}{2\overline{\sigma}} \sqrt{\frac{3P_s}{L(M_l - 1)}} \right)$$

Minimize wrt. $P_s^{(l)}$ (\rightsquigarrow power allocation) and L, M_l (\rightsquigarrow bit allocation) Power allocation: Largange multipliers + software with result verification Bit allocation: Non-linear mixed-integer programming problem + software with result verification + power allocation

Power allocation: Problem Formulation

Idea: Assign more power to the layers with small weights! (L, M_l fixed)

$$\rightarrow P_s^{(l)} = \frac{P_s}{L}$$
 (equally distributed) $\rightsquigarrow \pi_l^2 \cdot P_s^{(l)}$ so that $\sum_{l=1}^L \pi_l^2 \cdot P_s^{(l)} = P_s$

Method: Constrained optimization with Lagrange multipliers

$$J(\pi_1 \dots \pi_L, \mu) = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot$$

erfc $\left(\frac{\pi_l \lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right) + \mu \left(\sum\limits_{l=1}^{L} \pi_l^2 - L \right) \xrightarrow{\pi_l, \mu} \min$

Power allocation: Verified Solution

Possibility 1 Mix analytical and numerical techniques Stationary points: From the nonlinear algebraic system

$$\frac{\partial J(\pi_1 \dots \pi_L, \mu)}{\partial \pi_l} = -\frac{2k_l}{\sqrt{\pi_l}} \left(c_l \lambda_l e^{-c_l^2 \lambda_l^2 \pi_l^2} \right) + 2\mu \pi_l = 0, \quad \sum_{l=1}^L \pi_l^2 - L = 0$$

with $k_l = \frac{2}{\sum\limits_{l=1}^L \log_2 M_l} \cdot \left(1 - \frac{1}{\sqrt{M_l}} \right), \ c_l = \frac{1}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}}$

Solve using software with result verification \rightsquigarrow

C-XSC www2.math.uni-wuppertal.de/wrswt/xsc/cxsc.html

The (bordered) Hessian can be shown to be built in such a way that a stationary point is a local minimum!

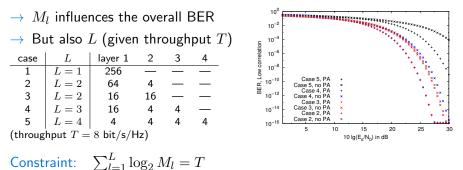
Possibility 2 Use global optimization directly (e.g., in C-XSC)

Possibility 2 is usually more afflicted by overestimation!

Introduction 00000 (4×4) MIMO

Bit allocation

$$\mathsf{BER:} \ P_b = \frac{2}{\sum\limits_{l=1}^{L} \log_2 M_l} \sum\limits_{l=1}^{L} \left(1 - \frac{1}{\sqrt{M_l}} \right) \cdot \mathsf{erfc}\left(\frac{\lambda_l}{2\sigma} \sqrt{\frac{3 \cdot P_s}{L(M_l - 1)}} \right)$$



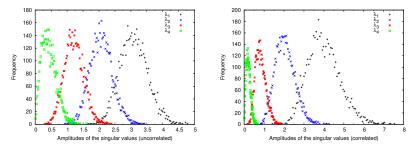
Solution: Brute force for small T and \hat{L} possible (+ power allocation)!

E. Auer, A. Ahrens

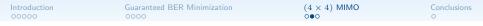
MIMO Link with Four Antennas

Simulation Settings

MIMO: Frequency flat, $n_{\rm T} = n_{\rm R} = 4$, T = 8 bit/s/Hz, $P_s = 1$ W Two data sets with 5000 channel realizations each for correlated and uncorrelated case (simulated)

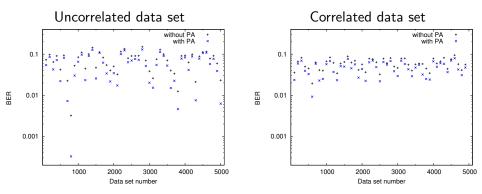


Results for the SNR 10 dB (corresponding to $\sigma \approx 0.2236$)



Power Allocation for Four Active Layers (L = 4)

Case $M_1 = 4$, $M_2 = 4$, $M_3 = 4$, $M_4 = 4$



BER is reduced for each constellation of sigular values!

Bit Allocation for a (4×4) MIMO System

$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4 \longrightarrow M_1 \ge M_2 \ge M_3 \ge M_4$

([lowest, highest] BER for 5000 channel realizations)

	Layer	BER	BER-PA	BER	BER-PA	
	M_1 , M_2 , M_3 , M_4	(correlated)	(correlated)	(uncorrelated)	(uncorrelated)	
One active layer						
1	256, 0, 0, 0	[0.0023,0.1492]	the same	[0.0240, 0.13423]	the same	
Two active layers						
2	128, 2, 0, 0	[0.0022,0.1449]	[0.0001,0.1220]	[0.0232, 0.1304]	[0.0059, 0.1036]	
3	64, 4, 0, 0	[55·10 ⁻⁶ ,0.1103]	[4·10 ⁻⁶ ,0.0959]	[0.0044, 0.0928]	[0.0007, 0.0749]	
4	32, 8, 0, 0	[10·10 ⁻⁷ ,0.0808]	[2·10 ⁻⁷ ,0.0773]	[0.0002, 0.0599]	[0.0001, 0.0556]	
5	16, 16, 0, 0	[40·10 ⁻⁷ ,0.1092]	[3·10 ⁻⁷ ,0.0981]	[1.4·10 ⁻⁴ , 0.06710]	[1.1·10 ⁻⁴ , 0.0589]	
Three active layers						
6	64, 2, 2, 0	[8·10 ⁻⁴ ,0.1279]	[8·10 ⁻⁶ ,0.1002]	[0.0127, 0.1121]	[0.0009, 0.0771]	
7	32, 4, 2, 0	[12·10 ^{—6} ,0.0926]	[2·10 ^{—6} ,0.0775]	[0.0015, 0.0739]	[6·10 ⁻⁵ , 0.0533]	
8	16, 8, 2, 0	[11·10 ⁻⁶ ,0.1006]	[5·10 ⁻⁶ ,0.0936]	[0.0001, 0.06417]	[2·10 ⁻⁵ , 0.0584]	
9	16, 4, 4, 0	[11·10 ⁻⁵ ,0.1015]	[1·10 ⁻⁵ ,0.0972]	[9·10 ⁻⁵ , 0.0850]	[1·10 ⁻⁵ , 0.0785]	
10	8, 8, 4, 0	[0.0001,0.1429]	[7·10 ⁻⁵ ,0.1282]	[2·10 ⁻⁵ , 0.1048]	[1·10 ⁻⁵ , 0.0916]	
Four active layers						
11	32, 2, 2, 2	[0.0106,0.1532]	[0.0032,0.1255]	[0.0073, 0.1426]	[0.0005, 0.1129]	
12	16, 4, 2, 2	[0.0071,0.1252]	[0.0023,0.1181]	[0.0006, 0.1099]	[7·10 ⁻⁵ , 0.1010]	
13	8, 4, 4, 2	[0.0109,0.1665]	[0.0038,0.1529]	[7·10 ⁻⁵ , 0.1419]	[4·10 ⁻⁵ , 0.1344]	
14	4, 4, 4, 4	[0.0414,0.2180]	[0.0228,0.2028]	[0.0014, 0.1909]	[0.0002, 0.1785]	

All four layers should never be activated at the same time! E. Auer, A. Ahrens

Conclusions

Results:

- $\rightarrow\,$ Problem solved by a mixed analytical/numerical technique with result verification
- \rightarrow At least the weakest layer should be switched off
- $\rightarrow\,$ For correlated systems, resource allocation plays an especially important role
- ightarrow Best performance for two active layers

Future work:

- \rightarrow Analyse the influence of the noise (σ)
- $\rightarrow\,$ Use GMD instead of SVD for obtaining equal weights does the performance improve?

Thank you for your attention!

E. Auer, A. Ahrens
Guaranteed BER Minimization for Correlated MIMO