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Abstract. In this paper, a topology optimization approach is presented, where uncertain load 
and material parameters are considered. The concept of compliance minimization, i.e. stiffness 
maximization, is applied based on a plane stress finite element formulation. In order to take 
uncertain structural load parameters and uncertain material behavior into account, the topology 
optimization is embedded into a reliability-based design optimization approach, where uncertain 
structural parameters and design variables are quantified as random variables, intervals and prob-
ability boxes (p-boxes). This allows to consider aleatory and epistemic uncertainties by means of 
polymorphic uncertainty models within the topology optimization. Solving optimization problems 
with random variables, intervals and p-boxes leads to a high computational effort, because the 
objective functions and constraints have to evaluated millions of times. To speed up the optimization 
process, the finite element simulation of the topology optimization is replaced by artificial neural 
networks. This includes not only the topology dependent maximal stresses and displacements of the 
structure, which are used as constraints, but also the material density distribution inside the design 
domain. An example is presented, where the material volume of a cantilever structure is minimized, 
considering interval uncertainty only, combinations of interval and stochastic uncertainty and also 
polymorphic uncertainty (p-boxes) for the load, the material parameters and the geometry of the 
structure.

Keywords: Topology Optimization, Intervals, Random Variables, Probability Boxes, Polymorphic 
Uncertainty, Artificial Neural Network

1. Introduction

Structural optimization is focused on the design of engineering structures using the construction 
material in an efficient way. Objectives are in general minimizing the self weight, maximizing the 
stiffness or balancing the stresses of all structural members. Beside these objectives, constraints with 
respect to the structural load bearing capacity (e.g. strength of materials) and the serviceability 
(e.g. maximal displacements) have to be considered. The design variables of structural optimization 
problems are either sizing or shape parameters defining the dimensions of the structural members 
(shape optimization) or information about the material distribution defining the topology of the 
structure (topology optimization), see e.g. (Bendsøe and Sigmund, 2004).

Topology optimization has been successfully applied to improve the design of many real world 
applications, such as in automotive (Cavazzuti et al., 2011) or aerospace (Paŕıs et al., 2012). Due
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to innovations in additive manufacturing, its relevance for complex industrial problems has greatly 
increased. However, in civil engineering the number of applications is limited (Beghini et al., 2014) 
owing to e.g. the conservative industry in consequence of high-cost combined with high risk projects 
or the low material cost compared to regular hourly wage rate of civil engineers and construction 
worker tend to a mentality of over-sized and quickly mounted structures. However, the global 
cement production is the third-largest source of anthropogenic emissions of carbon dioxide (Andrew, 
2018), which could lead to increasing prices for cement-based materials such as concrete due to 
policy measures such as carbon taxes soon (Lin and Li, 2011). Topology optimization could be 
one of the promising tools for more ecologically and architecturally appealing buildings (Beghini 
et al., 2014; Naboni and Paoletti, 2018). In civil engineering, topology optimization of structures 
is challenging, because of low volume fractions requiring fine design resolutions (Baandrup et al., 
2020), which may be hard to be manufactured especially for large scale structures. Often, multi 
objectives and multi constraints have to be considered. In addition to this, aleatory and epistemic 
uncertainties of structural parameters should be taken into account in order to get robust designs.

Reliability-based and robust design optimization approaches have been developed to capture 
stochastic structural parameters and stochastic design variables, see e.g. (Schuëller and Jensen, 
2008) and (Valdebenito and Schuëller, 2010). This requires to define appropriate uncertainty mea-
sures, e.g. by means of mean values, standard deviations and quantile values, to evaluate the 
objective functions and uncertain constraints. In case of polymorphic uncertainties, the reliability-
based design optimization approaches are extended, which means that the stochastic uncertainty 
measures have to be combined with non-stochastic uncertainty measures to evaluate the objective 
functions and constraints, e.g. by lower or upper bounds for intervals (Edler et al., 2019) or by 
credibility levels for fuzzy numbers, see e.g. (Mäck et al., 2019).

Topology optimization approaches under consideration of stochastic uncertainties can be per-
formed in the framework of reliability-based topology optimization, see e.g. (López et al., 2016) or 
robust optimization, see e.g. (Lazarov et al., 2012). Approaches for interval uncertainties have been 
developed e.g. in (da Silva et al., 2019) and (Wang and Gao, 2020). In (da Silva et al., 2020), a 
comparison on stochastic (robust and reliability-based) and non-stochastic (intervals for worst case) 
topology optimization approaches is presented. In this paper, a topology optimization approach is 
introduced, where both, aleatory and epistemic uncertainties are considered by combining stochastic 
and non-stochastic uncertainty models by means of random variables, intervals and p-boxes within 
the concept of polymorphic uncertainty quantification.

Solving optimization problems with random variables, intervals and p-boxes leads to a high 
computational effort, because the objective functions and constraints have to be evaluated millions 
of times. In order to reduce the computational effort, the finite element simulation model of the 
topology optimization process is approximated by artificial neural networks. Several feedforward 
networks are trained sequentially to efficiently evaluate the stress and displacement constraints of 
the topology optimization problem. This approach is based on the multilevel surrogate modeling 
strategy for the objective function computation introduced in (Freitag et al., 2020). Moreover, a 
feedforward network with high dimensional output is trained to learn the dependency between the 
selected material volume fraction (area fraction for 2D problems) and the corresponding optimal 
topology by means of the material densities inside the design domain. This allows one to quickly 
predict the optimal topologies with the artificial neural network.
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2. Topology optimization

The first concept in structural optimization known as topology optimization, dating back to 1988
(Bendsøe and Kikuchi, 1988), distributes the densities of the discretized design domain, based on
the use of an artificial composite material. Since then many different approaches where investigated,
see e.g. (Sigmund and Maute, 2013).

2.1. Compliance minimization

In this paper, the well developed concept of compliance minimization minρ : c(ρ) (stiffness maxi-
mization) is used, where the problem for a fixed design domain with multiple deterministic loading
conditions (i = 1, . . . , Ni load cases) and a volume constraint takes the following form:

min
ρ

: c(ρ) =

Ni∑
i=1

uT
i ·K(ρ) · ui (1)

s.t.

 K(ρ) · u = f
V (ρ) = Vf · V0

0 < ρmin ≤ ρe ≤ 1
(2)

In Eqs. (1) and (2), u, f and K are the global displacement vector, the global force vector and the
global stiffness matrix, respectively. The material density vector ρ contains the relative material
densities ρe of all finite elements e = 1, . . . , Ne, where Ne is the number of finite elements. The
relative material densities ρe are defined in [0, 1], but a minimum relative density ρmin is considered
for numerical reasons. V0 is the material volume of the complete design domain, and

V (ρ) =

Ne∑
e=1

Ve · ρe (3)

is the material volume of the optimized structure for a prescribed volume fraction Vf , where Ve is
the volume of a finite element e.

The problem formulation in Eqs. (1) and (2) follows a density approach (Bendsøe and Sigmund,
2004; Bendsøe, 1989), hence the stiffness matrix K depends on the material density. This relation
could be chosen with anisotropic rank 3 laminates, which leads to an optimal solution of the
optimization problem in Eqs. (1) and (2), see e.g. (Allaire et al., 2019; Bendsøe and Sigmund, 2004)
for details. But this solution contains many finite elements with intermediate densities between 0
and 1, which are difficult to manufacture. In order to force black-white solutions, the modified Solid
Isotropic Material with Penalization (SIMP) approach is used to express this connection. With the
SIMP approach, the modulus of elasticity of each finite element is computed by

Ee(ρe) = Emin + ρe
p(E0 − Emin), ρe ∈ [0, 1] (4)

where E0 is the modulus of elasticity of the material, Emin is a small modulus of elasticity defined for
numerical reasons to avoid singularities in the stiffness matrix and p is the penalization parameter
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(Andreassen et al., 2011), which is chosen as p = 3 in this work. As a result, the compliance for a 
single load case is calculated element wise as

c(ρe) =

Ne∑
e=1

Ee(ρe) · uTe · k0 · ue , (5)

where ue is the element displacement vector and k0 is the element stiffness matrix for a unit
modulus of elasticity (E = 1).

2.2. Topology optimization with interval load position

Most of the topology optimization approaches assume deterministic conditions for the input data,
obviating the different sources of uncertainties, which may affect significantly the structural per-
formance. In the classical design concepts, the uncertainty of loads and the structural resistance is
considered by partial safety factors and worst case analyses. Compared to the safety factor concept,
the required volume fraction of a structure can be reduced by the direct implementation of aleatory
and epistemic uncertain parameters and design variables into the topology optimization process
(López et al., 2016). For the consideration of these uncertainties in topology optimization, two
main approaches have been developed, i.e. robust and reliability-based formulations (Lazarov et
al., 2012; Thore et al., 2017).

In this work, a reliability-based formulation with polymorphic uncertain parameters is developed
by combining the topology optimization with a reliability-based global optimization to consider
probabilistic constraints. Within the previously described topology optimization approach, an in-
terval load position xF = [lxF , uxF ] is taken into account as a set of independent deterministic
load positions xF1 , . . . , xFi , . . . , xFNi

, where all Ni load positions are defined to be placed between
the lower interval bound xF1 ≥ lxF and the upper interval bound xFNi

≤ uxF . In every topology
optimization step, the Ni load positions are considered as independent load cases, which are solved
and superposed for the sensitivity and compliance calculation (Sigmund, 2001). Therefore, the
sensitivities in each finite element are calculated as

dce
dρe

=

Ni∑
i=1

−p · ρep−1 · (E0 − Emin) · uTe,i · k0 · ue,i . (6)

3. Reliability-based topology optimization with polymorphic uncertain parameters

3.1. Polymorphic uncertain parameters

In structural optimization, it is distinguished between uncertain design variables and uncertain a
priori parameters, see e.g. (Edler et al., 2019), which both may influence the objective function
and the constraints of an optimization problem. Uncertain design variables of an objective function
to be optimized, allows one to take tolerances or variability of the design variables into account.
In general, a reference value of an uncertain design variable, e.g. the mean value, is defined to
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be optimized, but each design realization results in an uncertain structural response. Whereas
uncertain design variables are varied for solving an optimization problem, uncertain a priori pa-
rameters are constant during the optimization, i.e. they cannot be optimized, but they also lead
to an uncertain structural response. Within the concept of polymorphic uncertainty modeling, a
topology optimization approach is presented, where uncertain parameters are considered as random
variables, intervals and p-boxes.

Random variables are quantified by stochastic distribution functions, e.g. lognormal distribution
or Gaussian distribution, which are defined by a probability density function (PDF) and the corre-
sponding cumulative distribution function (CDF). In this work, three stochastic a priori parameters
are considered as random variables, the structural load F , the modulus of elasticity E and the yield
strength fy.

In addition to the interval load position xF introduced as interval a priori parameter of the topol-
ogy optimization in Section 2.2, an interval design variable is defined to quantify an imprecise width
of the structure b within a 2D finite element formulation of the presented topology optimization
approach. The interval width b is represented by a range with lower and upper bounds

b = [lb, ub] . (7)

The interval midpoint

mb =
1

2
· (lb+ ub) (8)

is defined to be optimized and the interval radius

rb =
1

2
· (ub− lb) (9)

is kept constant during the optimization.
Combining random variables and intervals as inputs of a structural simulation results in p-box

of the structural response, i.e. the quantities of interest such as the maximal von Mises stress σV
and the maximal displacement w, which are used to evaluate the constraints of the optimization
problem. A p-box is defined as an imprecise random variable with a lower bound CDF (e.g. lF (σV ),

lF (w)) and an upper bound CDF (e.g. uF (σV ), uF (w)), which leads to interval probabilities, see e.g.
(Ferson et al., 2003). Here, the lower and upper bound CDFs of the resulting p-boxes are represented
by empirical distributions obtained from Monte Carlo simulations, which are denoted as free p-boxes
according to (Schöbi and Sudret, 2017). In addition to have polymorphic uncertainty only in the
results, p-boxes can also be considered directly as uncertain inputs. In this case, parametric p-
boxes (Schöbi and Sudret, 2017) are used, which are quantified by a bunch of random variables
with interval distribution parameters, e.g. interval mean values.

3.2. Objective function and design variables

The topology optimization problem given by Eqs. (1) and (2) is based on the minimization of the
compliance of a structure for a predefined volume fraction Vf . This means that for each realization
of Vf , where 0 ≤ Vf ≤ 1, an optimal material volume distribution V (ρ) within the design domain
volume V0 is obtained, where the material density ρe of each finite element e is a design variable.
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In order to minimize the material volume V of the structure, a reliability-based global optimiza-
tion problem is formulated. Here, a 2D plane stress finite element formulation is used to solve the 
topology optimization problem, see Eqs. (1) and (2). The volume of the structure, i.e. the objective 
function to be minimized, is given by

min: mV (Af , b) = Af ·A0 · mb (10)

s.t.

{
g1 = uPf,lbc − Pf,lbc,ac ≤ 0
g2 = uPf,ser − Pf,ser,ac ≤ 0 ,

(11)

where Af is the area fraction of the design domain area A0 and b is the interval width of the
plane. The first design variable Af is deterministic defined in 0 ≤ Af ≤ 1 and the second design

variable b is an interval with midpoint mb to be optimized and a fixed radius rb taking construction
impressions into account. Because of the interval design variable b, the volume of the structure V
is also an interval.

Here, the midpoint mV of the interval volume V is defined as objective function, because an
optimization problem with interval design variables cannot directly be solved, see e.g. (Edler et al.,
2019). However, it can be seen in Eq. (10), that the optimization problem is linear, which means
that also lower or upper bounds of V can be used as objective function, and that in this case,
the optimum is completely defined by one of the two constraint limit states (g1 = 0 or g2 = 0) in
Eq. (11).

3.3. Constraints

The first inequality constraint g1 ≤ 0 in Eq. (11) is defined according to the load bearing capacity
limit state of the structure. Here, the upper bound of the interval failure probability of the structure
with respect to the load bearing capacity uPf,lbc is given as the upper bound (worst case) probability
that the p-box of the von Mises stress σV is exceeding the stochastic distributed yield strength of
the material fy in at least one element of the structure. Pf,lbc,ac is the accepted failure probability
with respect to the load bearing capacity.

The second inequality constraint g2 ≤ 0 in Eq. (11) is defined according to the serviceability
limit state of the structure. In this work, the upper bound of the interval failure probability of
the structure with respect to the serviceability uPf,ser is defined as the upper bound (worst case)
probability that the p-box of the displacement w is exceeding a tolerated displacement wac in at
least one node of the structural finite element model. Pf,ser,ac is the accepted failure probability
with respect to the serviceability.

3.4. Solution of the optimization problem

The reliability-based topology optimization problem with polymorphic uncertain parameters is
solved by a particle swarm optimization algorithm (Kennedy and Eberhart, 1995). In each opti-
mization step, the objective function and the constraints have to be evaluated for each particle of
the swarm. In Figure 1, the computational scheme of the reliability-based topology optimization is
shown.
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Figure 1. Computational scheme for reliability-based topology optimization.

The basis of the reliability-based topology optimization is the finite element based topology op-
timization presented in Section 2, which computes the optimal topology (element material densities
ρe(Af )), the maximal displacement w∗(Af ) and the maximal von Mises stress σ∗V (Af ) for a selected
area fraction Af (deterministic design variable) and under consideration of an interval load position
xF (interval a priori parameter). It should be noted, that because of the linearity of the topology
optimization problem, a scaled load F ∗, a scaled modulus of elasticity E∗ and a scaled width of
the structure b∗ is used for the finite element simulation to compute the scaled displacement w∗

and the scaled von Mises stress σ∗V . This allows one to use the FE results of one realization of
the deterministic design variable Af for the constraints evaluation and for the objective function
evaluation by a simple post-processing of the FE results.

For the constraints evaluation, the p-box of the maximal von Mises stress is obtained by

σV (Af , b) =
F

F ∗ ·
b∗

b
· σ∗V (Af ) , (12)

and the p-box of the maximal displacement is computed by

w(Af , b) =
F

F ∗ ·
b∗

b
· E

∗

E
· w∗(Af ) . (13)

Equations (12) and (13) are solved by Monte Carlo Simulations (MCS) in combination with an
interval analysis. Because of the monotonicity, it is sufficient to evaluate the lower bound lb of
b within the interval analysis. Based on the results of Eqs. (12) and (13), the upper bound of
the interval failure probability of the structure with respect to the load bearing capacity uPf,lbc =
P (uσV ≤ fy) and the upper bound of the interval failure probability of the structure with respect to
the serviceability uPf,ser = P (uw ≤ wac) and the corresponding values of the limit state functions
g1 and g2 are computed by Eq. (11).

For the objective function evaluation, the midpoint mV of the interval volume V is computed
by Eq. (10). In addition to the midpoint, also the corresponding interval volume can be determined
by

V (Af , b) = Af ·A0 · b , (14)

where the interval bounds of V are obtained by interval arithmetic, i.e. by evaluating Eq. (14) for
the lower and upper bounds of b.
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4. Artificial neural networks in topology optimization

The solution of the reliability-based topology optimization problem in Section 3 requires multiple 
runs of the finite element simulation based topology optimization with realizations of the determin-
istic design variable Af to compute the element material densities ρe(Af ) (deterministic topology 
design variables), and the corresponding maximal displacement w∗(Af ) (serviceability constraint)
as well as the maximal von Mises stress σV

∗ (Af ) (load bearing constraint). In order to reduce 
the computation time, artificial neural networks are trained to approximate the finite element
simulation.

4.1. Constraints approximation with artificial neural networks

For the computation of the maximal displacement w∗(Af ) and the maximal von Mises stress σV
∗ (Af )

two feedforward networks are generated based on finite element simulation results:

− ANN11: Af 7→ σ∗V

− ANN21: Af 7→ w∗

Both networks ANN11 and ANN21 have one input neuron and one output neuron. The number of
hidden layers and neurons are selected according to the complexity of the finite element simulation
model, i.e. the topology optimization design domain. As can be seen in the example presented in
Section 5, one hidden layer with a few neurons is sufficient to approximate a 2D plane stress finite
element model for a rectangular design domain.

In order to further improve the performance of the optimization algorithm, two additional
feedforward networks are generated based on results of ANN11 and ANN21:

− ANN12: Af ,mb 7→ D1{g1 = 0}

− ANN22: Af ,mb 7→ D2{g2 = 0}

ANN12 and ANN22 both have two inputs, the design variables Af and mb, and one output, which
is the shortest distance D1{g1 = 0} and D2{g2 = 0} between a position in the design space and the
constraint limit states g1 = 0 and g2 = 0, respectively. In order to compute the distances D1{g1 = 0}
and D2{g2 = 0}, the constraint limit states g1 = 0 and g2 = 0 are approximated by a space
subdividing technique, see (Edler et al., 2019). The ANN-based distance function approximation
allows one to efficiently move particles of the swarm, which are in the unfeasible region of the design
space onto the constraint limit states, where the optimum of the linear optimization problem is
located.

For all four artificial neural networks ANN11, ANN21, ANN12 and ANN22 the hyperbolic tangent
activation function is used in the hidden neurons and the output neurons are activated by a linear
activation function.
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4.2. Topology prediction with artificial neural networks

In this work, an additional feedforward network is generated based on finite element simulation
results to predict the optimal topology, i.e. the optimal material density ρe of each finite element
e, for a given area fraction Af :

− ANN3: Af 7→ ρe with e = 1, . . . , Ne

This ANN3 has one input Af and a high dimensional (N-dimensional) output ρe, where the
dimension N corresponds to the number of finite elements of the design domain. For such a high
dimensional mapping, a deep neural network with several hidden layers and a lot of hidden neurons
is required, see Section 5.

Because the material density is defined as ρe ∈ [0, 1], the sigmoide activation function is used in
all hidden neurons and also in the output neurons.

5. Example

In this section, a classical benchmark problem for topology optimization is presented to illustrate the
described method for reliability-based topology optimization under consideration of polymorphic
uncertainty. In Figure 2, the design domain (80 cm length and 25 cm height) and the boundary
conditions of the investigated cantilever structure is shown. At the left boundary of the cantilever,
the displacements are completely fixed and a vertically concentrated load F ∗ = 10 kN is applied
at the top right side. The imprecise position of this vertical load is quantified as an interval xF =
[72, 80] cm with an interval width of 8 cm, see Figure 2.

Figure 2. Design domain and boundary conditions for the topology optimization of a cantilever beam.

5.1. Finite element model for the topology optimization

For the finite element analysis of the cantilever, a structured mesh of 80 × 25 four-node bilinear
square elements is used over the entire rectangular design domain, i.e. 2000 elements in total with
dimensions 1 cm × 1 cm. Plane stress conditions and a width of b∗ = 1 cm are selected. The
whole structure is made of steel S235, therefore the elastic material is assumed to be linearly

REC 2021

76



S. Freitag, S. Peters, P. Edler, G. Meschke

isotropic with modulus of elasticity E∗ = 21000 kN/cm2, Poisson ratio ν = 0.3 and yield strength 
fy
∗ = 23.5 kN/cm2.

The deterministic topology optimization problem according to Eq. (1) is solved for 65 discrete 
area fractions Af in the range of 0.2 to 1.0, i.e. Af is systematically reduced from 1.0 to 0.2 with a 
step size of ∆Af = 0.0125. It should be noted that the area fraction Af is equivalent to the volume 
fraction Vf . The interval load position xF is considered by evaluating Eq. (6) for Ni = 9 independent 
load cases. This means that the load is applied at nine different positions of the 8 cm wide loading 
zone and all 9 load positions are considered for the sensitivity and compliance calculation in each 
optimization step.

For the finite element simulations, an in house MATLAB code is used, which is based on 
(Andreassen et al., 2011). In the simulations, a sensitivity filter, where rmin is set to 3 cm, is 
used to prevent checkerboard patterns, see (Bendsøe and Sigmund, 2004) for details about filtering 
methods in general. For the 65 area fractions, the optimal topologies (final element material density 
ρe for each of the Ne = 2000 finite elements) and the corresponding maximal displacements w∗ as 
well as the corresponding maximal von Mises stresses σV

∗ are stored.

5.2. Artificial neural network training

For ANN11 and ANN21, feedforward networks with one hidden layer comprising five hidden neurons 
are trained to approximate the dependencies between the area fraction Af and the maximal von

Mises stress σV
∗ (Af ) as well as the dependencies between the area fraction Af and the maximal 

displacement w∗(Af ), respectively. Only 21 out of the 65 finite element simulation results have 
been used to set up the neural networks. Because it has been decided to restrict the design space 
for the area fraction Af to the range of 0.2 to 0.7, the neural networks have only been trained for 
this range. In Figure 3, the neural network predictions are compared with finite element simulation 
results.

Figure 3. Comparison of ANN11 (left) and ANN21 (right) with finite element simulation results (FE) used for training
and testing.
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Using results of ANN11 and ANN21 in combination with Monte Carlo simulations to compute the
failure probabilities with respect to the load bearing capacity and the serviceability, two additional
artificial neural networks (ANN12 and ANN22) are trained to approximate the shortest distance
to the constraint limit states g1 = 0 and g2 = 0, respectively. Also one hidden layer is sufficient for
these networks, where the number of hidden neurons is 10 for ANN12 and 4 for ANN22.

In order to learn the optimal topology (the optimal material density distribution ρe of the
structure) for specific area fractions Af , an ANN3 is created, which has 2000 output neurons
corresponding to the number of finite elements. For this challenging task, a deep feedforward neural
network with three hidden layers and 1000 hidden neurons per layer is used.

It should be noted, that for all ANNs different architectures (with different numbers of hidden
layers and hidden neurons) have been investigated and here only the finally used ANN architectures
are described.

5.3. Results of the reliability-based topology optimization

The topology optimization is performed with different number of uncertain a priori parameters and
finally also with an interval design variable. In order to investigate the influence of the uncertain
parameters to the optimal design, three topology optimization problems are formulated according
to the following parameters:

− Problem 1: optimization only with interval load position

• deterministic design variables:

∗ Af
∗ ρe(Af )

∗ b

• uncertain a priori parameters:

∗ xF = [72, 80] cm (interval)

• deterministic constraints:

∗ g1 = σ∗V − f∗y ≤ 0

∗ g2 = w∗ − 0.3 cm ≤ 0

− Problem 2: optimization with interval load position and stochastic a priori parameters

• deterministic design variables:

∗ Af
∗ ρe(Af )

∗ b

• uncertain a priori parameters:

∗ xF = [72, 80] cm (interval)

∗ F (normal distributed random variable with mean value µ(F ) = 10 kN and standard
deviation σ(F ) = 2 kN)
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∗ E (lognormal distributed random variable with mean value µ(E) = 21000 kN/cm2

and standard deviation σ(E) = 1050 kN/cm2)

∗ fy (lognormal distributed random variable with mean value µ(fy) = 23.5 kN/cm2

and standard deviation σ(fy) = 1.175 kN/cm2)

• stochastic constraints:

∗ g1 = Pf,lbc − Pf,lbc,ac ≤ 0 (with Pf,lbc = P (σV ≤ fy) and Pf,lbc,ac = 7 · 10−5)

∗ g2 = Pf,ser − Pf,ser,ac ≤ 0 (with Pf,ser = P (w ≤ 0.3 cm) and Pf,ser,ac = 6.7 · 10−2)

− Problem 3: optimization with interval load position, stochastic a priori parameters and
interval design variable

• design variables:

∗ Af (deterministic)

∗ ρe(Af ) (deterministic)

∗ b (interval, with midpoint mb to be optimized and fixed radius rb = 1 mm)

• uncertain a priori parameters:

∗ xF = [72, 80] cm (interval)

∗ F (normal distributed random variable with mean value µ(F ) = 10 kN and standard
deviation σ(F ) = 2 kN)

∗ E (lognormal distributed random variable with mean value µ(E) = 21000 kN/cm2

and standard deviation σ(E) = 1050 kN/cm2)

∗ fy (lognormal distributed random variable with mean value µ(fy) = 23.5 kN/cm2

and standard deviation σ(fy) = 1.175 kN/cm2)

• interval-stochastic constraints:

∗ g1 = uPf,lbc − Pf,lbc,ac ≤ 0 (with uPf,lbc = P (uσV ≤ fy) and Pf,lbc,ac = 7 · 10−5)

∗ g2 = uPf,ser −Pf,ser,ac ≤ 0 (with uPf,ser = P (uw ≤ 0.3 cm) and Pf,ser,ac = 6.7 · 10−2)

It should be noted, that problem 3 is the general case, which has been described in Sections 2
and 3. Problem 1 and problem 2 are selected just for the comparison of the results. The uncertainty
of the parameters is increased step by step from problem 1 to problem 3. The objective of all three
optimization problems is the minimization of the midpoint mV of the required material volume
V according to Eq. (10), where for problem 1 and problem 2, the required material volume is
deterministic, i.e. mV = V .

The three optimization problems are solved by particle swarm optimization using five particles.
For the evaluation of the constraints and the prediction of the optimal topologies, the artificial
neural network surrogate models are applied. In Figure 4, the results of the three optimization
problems are presented, see also Table I. The optima are all placed at the constraint limit state
functions, which are marked by continuous and dashed lines in Figure 4. The corresponding optimal
topologies for the three optimization problems are shown in Figure 5. It can be seen, that the
topology predictions based on the high dimensional artificial neural network ANN3 fit very good
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with the results of the finite element (FE) simulations. Please note that these results were not used
to train the ANN.

As expected, the midpoint mV of the required material volume is increasing with increasing
uncertainty in order to guarantee robust designs. However, this is mainly achieved by increasing
the midpoint of the width mb of the structure, because surprisingly the area fraction Af is reduced
for increasing uncertainty. One reason could be, that the sensitivities for the varying width of all
finite elements are linear, due to the 2D formulation. Moreover lowering the area fraction Af leads
towards other optimized designs of the structure, i.e. only the densities of less important elements
(elements with low sensitivities) are reduced to zero. It follows that the trailing optimization process
first reduces the densities of all elements with less than linear sensitivities and supports all elements
with higher than linear sensitivities.

Figure 4. Optimal design variables of the area fraction Af and the midpoint mb of the interval width of the structure,
the three optima are obtained for optimization with interval load position (problem 1), with additional stochastic a
priori parameters F , E and fy (problem 2) and with the additional interval design variable b (problem 3).

Table I. Optima of the design variables Af and mb
and corresponding values of the objective function

mV

problem 1 problem 2 problem 3

Af [-] 0.47 0.43 0.41

mb [cm] 0.44 0.88 1.02

mV [cm3] 419 753 839

An additional comparison of the results is done by removing the width of the structure (b or b)
from the design variables. This means that in this case, only the area fraction Af and the element
material density ρe(Af ) are used as deterministic design variables. The white line in Figure 6 shows
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Figure 5. Optimal topologies predicted by an artificial neural network (ANN3) and comparison with finite element
simulation (FE); a) interval load position (problem 1); b) with additional stochastic a priori parameters F , E and fy
(problem 2); c) with additional interval design variable b (problem 3).

this special case. It can now be seen, that, as expected, the area fraction Af and consequently also
the midpoint mV of the required material volume is increasing with increasing uncertainty, see also
Table II and Figure 7.

Figure 6. In addition to the results in Figure 4, the optimal area fraction Af is evaluated for a constant structural
width of b = 1 cm (for problem 1 and problem 2) and for b = [0.9, 1.1] cm (for problem 3), three additional results
at the white line for optimization with interval load position only (problem 1), with additional stochastic a priori
parameters F , E and fy (problem 2) and with additional interval a priori parameter b (problem 3).

In the presented problems 2 and 3, intervals and random variables are used as uncertain param-
eters and the resulting maximal von Mises stresses and displacements are obtained as free p-boxes.
This means, that the combination of intervals and random variables in the input space leads to
polymorphic uncertain results and finally imprecise probabilities, which are used to evaluate the

REC 2021

81



Topology Optimization with Polymorphic Uncertainties using Artificial Neural Networks

Figure 7. Optimal topologies predicted by an artificial neural network (ANN3) and comparison with finite element
simulation (FE); a) interval load position; b) with additional stochastic a priori parameters F , E and fy; c) with
additional interval a priori parameter b

Table II. Optima of the design variable Af and the
corresponding value of the objective function mV for
a constant structural width b = 1 cm (for problem
1 and problem 2) and b = [0.9, 1.1] cm (for problem
3)

problem 1 problem 2 problem 3

Af [-] 0.30 0.39 0.42

mV [cm3] 598 775 838.5

failure probability constraints. However, the presented approach also works, if polymorphic uncer-
tainty is already considered in the input space of the optimization problem. This is demonstrated
by an additional problem 4, where the random variables of problems 2 and 3 are extended to
parametric p-boxes quantified as normal and lognormal distributed random variables with interval
mean values:

− Problem 4: optimization with interval load position, polymorphic uncertain a priori param-
eters defined as parametric p-boxes and interval design variable

• design variables:

∗ Af (deterministic)

∗ ρe(Af ) (deterministic)

∗ b (interval, with midpoint mb to be optimized and fixed radius rb = 1 mm)

• uncertain a priori parameters:

∗ xF = [72, 80] cm (interval)

REC 2021

82



S. Freitag, S. Peters, P. Edler, G. Meschke

∗ F (normal distributed parametric p-box with mean value µ(F ) = [9.5, 10.5] kN and
standard deviation σ(F ) = 2 kN)

∗ E (lognormal distributed parametric p-box with mean value µ(E) = [20750, 21250] kN/cm2

and standard deviation σ(E) = 1050 kN/cm2)

∗ fy (lognormal distributed parametric p-box with mean value µ(fy) = [23.2, 23.8] kN/cm2

and standard deviation σ(fy) = 1.175 kN/cm2)

• interval-stochastic constraints:

∗ g1 = uPf,lbc − Pf,lbc,ac ≤ 0 (with uPf,lbc = P (uσV ≤ fy) and Pf,lbc,ac = 7 · 10−5)

∗ g2 = uPf,ser −Pf,ser,ac ≤ 0 (with uPf,ser = P (uw ≤ 0.3 cm) and Pf,ser,ac = 6.7 · 10−2)

The results of problem 4 are shown in Table III and Figure 8. Compared to the results of
problems 1 to 3, it can be seen, that the midpoint mV of the required material volume is further
increasing because of the additional interval uncertainty of the stochastic distribution parameters.

Table III. Optima of the design variables Af and mb and the corresponding value of the objective
function mV of problem 4

optimization with two design variables optimization with one design variable

and constant width b = [0.9, 1.1] cm

Af [-] 0.42 0.44

mb [cm] 1.05 1.0

mV [cm3] 872 874

Figure 8. Optimal design variable of the area fraction Af and the midpoint mb of the interval width of the structure
for problem 4, the result at the white line shows the optimal area fraction Af evaluated for a constant structural
width of b = [0.9, 1.1] cm.
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6. Conclusion

In the paper, a reliability-based topology optimization approach has been presented, where intervals,
random variables and p-boxes are considered by means of a polymorphic uncertainty quantification.
The finite element based topology optimization has been embedded into a structural optimization
approach in order to consider probabilistic constraints (accepted failure probabilities) with respect
to the structural load bearing capacity and the serviceability. The results of a cantilever structure
optimization have shown, that as expected for increasing uncertainty, more material volume is
required. But surprisingly, only the width of the structure is increased and the area fraction is
reduced with increasing uncertainty. This can partially be explained by the sensitivities used within
the compliance minimization, but needs further investigation in future works.

In order to reduce the numerical effort, several artificial neural networks have been trained to
approximate the constraints evaluation as well as the optimal topology computation. Whereas for
the constraint approximations small ANN architectures are sufficient, a deep ANN with 2000 output
neurons has been created to predict the material density of each finite element in the design domain
for a specific area (volume) fraction. Also if the example presented in this paper is an academic one,
the potential of deep ANNs for topology prediction has been demonstrated. In future works, the
concept of ANN-based topology prediction can be extended to 3D problems and to speed up the
finite element simulation also during the topology optimization process, i.e. not only to predict the
final optimal topology for a given volume fraction but also the sequential compliance minimization
process. It is also planned to perform sensitivity analyses of the uncertain input parameters and to
systematically investigate the consequence of FE discretization and ANN training errors, as well
as minimization residuals of the optimization approach to the results.
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Paŕıs, J., S. Mart́ınez, F. Navarrina, and M. Casteleiro. Topology optimization of aeronautical structures with stress
constraints: general methodology and applications. Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering, 226(5):589–600, 2012.
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